A three-dimensional constitutive model for the stress relaxation of articular ligaments.

نویسندگان

  • Frances M Davis
  • Raffaella De Vita
چکیده

A new nonlinear constitutive model for the three-dimensional stress relaxation of articular ligaments is proposed. The model accounts for finite strains, anisotropy, and strain-dependent stress relaxation behavior exhibited by these ligaments. The model parameters are identified using published uniaxial stress-stretch and stress relaxation data on human medial collateral ligaments (MCLs) subjected to tensile tests in the fiber and transverse to the fiber directions (Quapp and Weiss in J Biomech Eng Trans ASME 120:757-763, 1998; Bonifasi-Lista et al. in J Orthop Res 23(1):67-76, 2005). The constitutive equation is then used to predict the nonlinear elastic and stress relaxation response of ligaments subjected to shear deformations in the fiber direction and transverse to the fiber direction, and an equibiaxial extension. A direct comparison with stress relaxation data collected by subjecting human MCLs to shear deformation in the fiber direction is presented in order to demonstrate the predictive capabilities of the model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Nano-indentation Identification Technique for Viscoelastic Constitutive Characteristics of Periodontal Ligaments

Introduction: Nano-indentation has recently been employed as a powerful tool for determining the mechanical properties of biological tissues on nano and micro scales. A majority of soft biological tissues such as ligaments and tendons exhibit viscoelastic or time-dependent behaviors. The constitutive characterization of soft tissues is among very important subjects in clinical medicine and espe...

متن کامل

A Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments

Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...

متن کامل

ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY

The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...

متن کامل

Biaxial mechanical properties of swine uterosacral and cardinal ligaments.

Mechanical alterations to pelvic floor ligaments may contribute to the development and progression of pelvic floor disorders. In this study, the first biaxial elastic and viscoelastic properties were determined for uterosacral ligament (USL) and cardinal ligament (CL) complexes harvested from adult female swine. Biaxial stress-stretch data revealed that the ligaments undergo large strains. They...

متن کامل

Muscle-driven finite element simulation of human foot movements.

This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomechanics and modeling in mechanobiology

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2014